N9-KINETICS

Rate Laws

N9 - KINETICS

Target: I can write differential rate laws and integrated rate laws, and I can use graphical methods to identify reaction orders.

Rate Laws

Differential rate laws

Express (reveal) the relationship between concentration of reactants and rate of the reaction. - Usually just called the rate law.

Integrated rate laws
Express (reveal) the relationship between concentration of reactants and time

Rate Laws

The rate law of a reaction is the mathematical relationship between the rate of the reaction and the concentrations of the reactants and homogeneous catalysts as well.

The rate law must be determined experimentally!

The rate of a reaction is directly proportional to the concentration of each reactant raised to a power.

Rate Laws

For the reaction $\mathbf{a A}+\mathbf{b B} \rightarrow$ products the rate law would have the form given below.

$$
\text { Rate }=k[A]^{n}[B]^{m}
$$

Orders of the reactants - n and m The rate constant - k

Rate Laws

The exponent on each reactant in the rate law is called the order with respect to that reactant.

Order of the reaction
The sum of the exponents on the reactants

Single Step Reactions

The orders do not match the coefficients in the balanced equation UNLESS the reaction happens in one single step.

Not as common as it taking multiple steps.

Single Step Reactions

The following reaction happens in one single step.

$$
\begin{gathered}
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g) \\
\text { Rate }=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right] .
\end{gathered}
$$

The reaction is

- second order with respect to [NO],
- first order with respect to $\left[\mathrm{O}_{2}\right]$,
- and third order overall.

Method of Initial Rates

Since we rarely know if a reaction happens in one or more steps, we have to use pattern recognition to figure out what the exponents must be.

- Systematically change the starting []s of the various reactants while holding the [] of other reactants the same
- See how the rate changes as you change the []s
- What is the relationship between the rate and the []s ?
- That tells you the exponents!

Writing a (differential) Rate Law

Problem - Write the rate law, determine the value of the rate constant, k, and the overall order for the following reaction:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{g})$

Experiment	$[\mathrm{NO}]$ $(\mathrm{mol} / \mathrm{L})$	$\left[\mathrm{Cl}_{2}\right]$ $(\mathrm{mol} / \mathrm{L})$	Rate Mol/L.s
1	0.250	0.250	1.43×10^{-6}
2	0.500	0.250	5.72×10^{-6}
3	0.250	0.500	2.86×10^{-6}
4	0.500	0.500	11.4×10^{-6}

Use the Method of Initial Rates

Writing a (differential) Rate Law

Part 1 - Determine the values for the exponents in the rate law:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{~g}) \quad \text { Rate }=\mathrm{k}[\mathrm{NO}]^{x}\left[\mathrm{Cl}_{2}\right]^{\mathrm{y}}
$$

Experiment	$[\mathrm{NO}]$ $(\mathrm{mol} / \mathrm{L})$	$\left[\mathrm{Cl}_{2}\right]$ $(\mathrm{mol} / \mathrm{L})$	Rate $\mathrm{Mol} / \mathrm{L} \cdot \mathbf{s}$
1	0.250	0.250	1.43×10^{-6}
2	0.500	0.250	5.72×10^{-6}
3	0.250	0.500	2.86×10^{-6}
4	0.500	0.500	11.4×10^{-6}

In experiment 1 and 2, [Cl_{2}] is constant while [NO] doubles. Rate quadruples, so the rxn is 2nd order with respect to [NO] Rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]^{\mathrm{y}}$

Writing a (differential) Rate Law

Part 1 - Determine the values for the exponents in the rate law:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{~g}) \quad \text { Rate }=\mathrm{k}\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]^{y}\right.
$$

Experiment	$[\mathrm{NO}]$ $(\mathrm{mol} / \mathrm{L})$	$\left[\mathrm{Cl}_{2}\right]$ $(\mathrm{mol} / \mathrm{L})$	Rate $\mathrm{Mol} / \mathrm{L} \cdot \mathrm{s}$
1	0.250	0.250	1.43×10^{-6}
2	0.500	0.250	5.72×10^{-6}
3	0.250	0.500	2.86×10^{-6}
4	0.500	0.500	11.4×10^{-6}

In experiment 2 and 4, [NO] is constant while $\left[\mathrm{Cl}_{2}\right]$ doubles. Rate doubles, so the reaction is first order with respect to $\left[\mathrm{Cl}_{2}\right]$

$$
\text { Rate }=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]^{1}
$$

Writing a (differential) Rate Law

Part 2 - Determine the value of the rate constant, k, including units, by using any of the experimental trials - doesn't matter which one! $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathbf{N O C l}(\mathrm{g}) \quad$ Rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]^{1}$

Experiment	$[\mathrm{NO}]$ $(\mathrm{mol} / \mathrm{L})$	$\left[\mathrm{Cl}_{2}\right]$ $(\mathrm{mol} / \mathrm{L})$	Rate $\mathrm{Mol} / \mathrm{L} \cdot \mathrm{s}$
1	0.250	0.250	1.43×10^{-6}

$$
\begin{aligned}
& 1.43 \times 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~L} \cdot \mathrm{~s}}=k\left(0.250 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)^{2}\left(0.250 \frac{\mathrm{~mol}}{\mathrm{~L}}\right) \\
& k=\left(\frac{1.43 \times 10^{-6}}{0.250^{3}}\right)\left(\frac{\mathrm{mol}}{\mathrm{~L} \cdot \mathrm{~s}}\right)\left(\frac{\mathrm{L}^{3}}{\mathrm{~mol}^{3}}\right)=9.15 \times 10^{-5} \frac{\mathrm{~L}^{2}}{\mathrm{~mol}^{2} \cdot \mathrm{~s}}
\end{aligned}
$$

How I like to find the units because l'm lazy ©

We know the unit for rate is always $\mathrm{M} / \mathrm{sec}$, and we know the rate law, and that the units for [] is M

Rate $=\mathbf{k}[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]^{1}$

$$
\begin{aligned}
& \frac{M}{\sec }=k x M^{2} M^{1} \\
& \frac{X}{\sec } \times \frac{1}{M^{2}} \times \frac{1}{\frac{1}{1}}=k
\end{aligned}
$$

$$
\frac{1}{M^{2} \sec }=k \text { units }
$$

$$
\frac{L^{2}}{\operatorname{mol}^{2} \sec }=k \text { units }
$$

$$
\begin{gathered}
M^{-2} \sec ^{-1}=k \text { units } \\
L^{2} \text { mol }^{-2} \sec ^{-1}=k \text { units }
\end{gathered}
$$

Writing a (differential) Rate Law

Part 3 - Determine the overall order
The sum of the exponents, or orders, of the reactants.

$$
\mathrm{R}=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]
$$

\therefore The reaction is $3^{\text {rd }}$ order

The Effect of Orders on Rate Rate $=k[A]^{n}$

If you Double [A]	
Order	Effect on Rate
$\mathbf{0}$	No change
$\mathbf{1}$	$\mathbf{x ~ 2}$
$\mathbf{2}$	$\mathbf{x ~ 4}$
$\mathbf{3}$	$\mathbf{x ~ 9}$
1.5	$x \sim 2.83$
-1	0.5

Not common

Integrated Rate Law

For the reaction $\mathrm{A} \rightarrow$ products, the rate law depends on the concentration of A.

Applying calculus to integrate the rate law gives another equation showing the relationship between the concentration of A and the time of the reaction; this is called the integrated rate law.

Integrated Rate Law

Graphing Concentration Data vs Time

Graph the following versus time. The one that is linear tells you the order! Why? Because of Math. Ha!

Memory Device	y-axis	Order	$\mathbf{y}=\mathrm{mx}+\mathbf{b}$ format
\mathbf{C} Concentration	$[\mathrm{A}]$	$0^{\text {th }}$	$[A]_{t}=-k t+[A]_{0}$
\mathbf{N} Natural Log	$\operatorname{Ln}[\mathrm{A}]$	$1^{\text {st }}$	$\operatorname{Ln}[A]_{t}=-k t+\operatorname{Ln}[A]_{0}$
\mathbf{R} Reciprocal	$1 /[\mathrm{A}]$	$2^{\text {nd }}$	$\frac{1}{[A]_{t}}=k t+\frac{1}{[A]_{0}}$

Half Life with Integrated Rate Laws

For 0 ${ }^{\text {th }}$ Order plug into: $[A]_{t}=-k t+[A]_{0}$
You get: $\quad t_{1 / 2}=\frac{[A]_{0}}{2 k}$
For $1^{\text {st }}$ order plug into: $\operatorname{Ln}[A]_{t}=-k t+\operatorname{Ln}[A]_{0}$
You get: $t_{1 / 2}=\frac{0.693}{k}$
For $2^{\text {nd }}$ order plug into: $\frac{1}{[A]_{i}}=k t+\frac{1}{[A]_{0}}$
You get: $t_{1 / 2}=\frac{1}{k[A]_{0}}$

Remember... half life is the time it takes for $1 / 2$ the starting amount to decay.

So....if....

$$
[A] t=\frac{[A]_{0}}{2}
$$

Half Life with Integrated Rate Laws

Half-Life $\rightarrow \quad[A] t=\frac{[A]_{0}}{2}$

Order	Plug Into Integrated Law	You get...
0	$[A]_{t}=-k t+[A]_{0}$	$t_{1 / 2}=\frac{[A]_{0}}{2 k}$
1	$\operatorname{Ln}[A]_{t}=-k t+\operatorname{Ln}[A]_{0}$	$t_{1 / 2}=\frac{0.693}{k}$
2	$\frac{1}{[A]_{t}}=k t+\frac{1}{[A]_{0}}$	$t_{1 / 2}=\frac{1}{k[A]_{0}}$

Relationship Between [] and $1 / 2$ Life

- $0^{\text {th }}$ Order - Lower the initial [] of reactants, the shorter the half-life.

$$
t_{1 / 2}=[\mathrm{A}]_{\text {init }} / 2 k
$$

- $1^{\text {st }}$ Order - Half-life is independent of the concentration.
- Closest to true half-life

$$
t_{1 / 2}=\ln (2) / k
$$

- $2^{\text {nd }}$ Order - Half-life is inversely proportional to the initial [] increasing the initial concentration shortens the half-life.

$$
t_{1 / 2}=1 /\left(k[A]_{\text {init }}\right)
$$

Graphical Determination of Rate Law

X-axis = Time			
Order	Memory Device		
0	C	Concentration	Y-Axis
1	N	Natural Logarithm	[A]
2	R	Reciprocal	$1 /[$ A $]$

- Whichever plot gives a straight line determines the order with respect to $[A]$.
- If linear is $[A]$ versus time, Rate $=k[A]^{0}$.
- If linear is $\ln [A]$ versus time, Rate $=k[A]^{1}$.
- If linear is $1 /[A]$ versus time, Rate $=k[A]^{2}$.

[A] vs. Time

Ln [A] vs. Time

1/[A] vs. Time

$R^{2}=0.999$
R^{2} tells you how good your of a fit your line is perfect is $\mathbf{R}^{2}=1$. The closer to 1 the better the fit!

Solving an Integrated Rate Law

Time (s)	$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right](\mathrm{mol} / \mathrm{L})$
0	1.00
120	0.91
300	0.78
600	0.59
1200	0.37
1800	0.22
2400	0.13
3000	0.082
3600	0.050

Problem: Find the integrated rate law and the value for the rate constant, k

Excel or a graphing calculator really help! Here is an Excel sheet I made to make the graphs. https://tinyurl.com/excel-kinetics

You can download Rate Law programs for the various brands/models of graphing calculators too.

Time vs. $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$

Time (s)	$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
0	1.00
120	0.91
300	0.78
600	0.59
1200	0.37
1800	0.22
2400	0.13
3000	0.082
3600	0.050

Regression results:

$$
\begin{aligned}
& y=a x+b \\
& a=-2.64 \times 10^{-4} \\
& b=0.841 \\
& r^{2}=0.8891
\end{aligned}
$$

Time vs. $\ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$

Time (s)	$\operatorname{In}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
0	0
120	-0.0943
300	-0.2485
600	-0.5276
1200	-0.9943
1800	-1.514
2400	-2.04
3000	-2.501
3600	-2.996

Regression results:

$$
\begin{aligned}
& y=a x+b \\
& a=-8.35 \times 10^{-4} \\
& b=-.005 \\
& r^{2}=0.99978
\end{aligned}
$$

Time vs. $1 /\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$

Time (s)	$1 /\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
0	1.00
120	1.0989
300	1.2821
600	1.6949
1200	2.7027
1800	4.5455
2400	7.6923
3000	12.195
3600	20.000

Regression results:

$$
\begin{aligned}
& y=a x+b \\
& a=0.00460 \\
& b=-0.847 \\
& r^{2}=0.8723
\end{aligned}
$$

And the winner is... Time vs. $\ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$

1. As a result, the reaction is $1^{\text {st }}$ order
2. The (differential) rate law is:

$$
R=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]
$$

3. The integrated rate law is:

$$
\ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=-k t+\ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{0}
$$

4. But...what is the rate constant, k ?

Finding the Rate Constant, \mathbf{k}

Method \#1: Calculate the slope from the Time vs. $\ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ table.

$$
\begin{aligned}
& \text { slope }=\frac{\Delta \ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{\Delta t}=\frac{-2.996}{3600 \mathrm{~s}} \\
& \text { slope }=-8.32 \times 10^{-4} \mathrm{~s}^{-1}
\end{aligned}
$$

Now remember:

$$
\begin{aligned}
\ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right] & =-k t+\ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{0} \\
\therefore \mathbf{k} & =\text {-slope } \\
\mathbf{k} & =8.32 \mathbf{x} \mathbf{1 0}^{-4} \mathbf{s}^{\mathbf{- 1}}
\end{aligned}
$$

Time (s)	$\operatorname{In}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
0	0
120	-0.0943
300	-0.2485
600	-0.5276
1200	-0.9943
1800	-1.514
2400	-2.04
3000	-2.501
3600	-2.996

Finding the Rate Constant, \mathbf{k}

Method \#2: Obtain k from the linear regression analysis.

$$
\text { slope }=a=-8.35 \times 10^{-4} s^{-1}
$$

Now remember:

$$
\begin{aligned}
& \ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=-k t+\ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{0} \\
& \quad \therefore \mathbf{k}=\text {-slope }
\end{aligned}
$$

Regression results:

$$
\begin{aligned}
& y=a x+b \\
& a=-8.35 \times 10^{-4} \\
& b=-.005 \\
& r^{2}=0.99978
\end{aligned}
$$

$$
k=8.35 \times 10^{-4} \mathrm{~s}^{-1}
$$

$1^{\text {st }}$ Order - Integrated Rate Law

Time

$\underline{2}^{\text {nd }}$ Order - Integrated Rate Law

Time

Integrated Rate Laws w/ more than 1 reactant

Examine rate w/ one reactant very low [] and the others much higher

- Rate $=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[B]^{\mathrm{m}}[\mathrm{C}]^{\mathrm{p}}$
- If $[\mathrm{B}] \gg[\mathrm{A}]$ and $[\mathrm{C}] \gg[\mathrm{A}]$ then $[\mathrm{B}]$ and $[\mathrm{C}]$ do not change as much relative to $[A]$ so...they don't really matter!

$$
- \text { Rate }=k^{\prime}[A]^{n}
$$

- Pseudo-first-order rate law (or zero-order , or second-order)
- Simplification yields a rate law of a particular order
- The Prime means pseudo

YouTube Link to Presentation https://youtu.be/0ghPS-QFc9c

